Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.350
Filtrar
1.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727263

RESUMO

Cellular and organismic copper (Cu) homeostasis is regulated by Cu transporters and Cu chaperones to ensure the controlled uptake, distribution and export of Cu ions. Many of these processes have been extensively investigated in mammalian cell culture, as well as in humans and in mammalian model organisms. Most of the human genes encoding proteins involved in Cu homeostasis have orthologs in the model organism, Caenorhabditis elegans (C. elegans). Starting with a compilation of human Cu proteins and their orthologs, this review presents an overview of Cu homeostasis in C. elegans, comparing it to the human system, thereby establishing the basis for an assessment of the suitability of C. elegans as a model to answer mechanistic questions relating to human Cu homeostasis.


Assuntos
Caenorhabditis elegans , Cobre , Homeostase , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Cobre/metabolismo , Animais , Humanos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Chaperonas Moleculares/metabolismo
2.
Sci Rep ; 14(1): 10453, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714725

RESUMO

Recent research has highlighted the importance of the gut microbiome in regulating aging, and probiotics are interventions that can promote gut health. In this study, we surveyed several novel lactic acid bacteria to examine their beneficial effect on organismal health and lifespan in C. elegans. We found that animals fed some lactic acid bacteria, including L. acidophilus 1244 and L. paracasei subsp. paracasei 2004, grew healthy. Supplementation with the lactic acid bacterial strains L. acidophilus 1244 or L. paracasei subsp. paracasei 2004 significantly improved health, including food consumption, motility, and resistance to oxidative stressor, hydrogen peroxide. Our RNA-seq analysis showed that supplementation with L. paracasei subsp. paracasei 2004 significantly increased the expression of daf-16, a C. elegans FoxO homolog, as well as genes related to the stress response. Furthermore, daf-16 deletion inhibited the longevity effect of L. paracasei subsp. paracasei 2004 supplementation. Our results suggest that L. paracasei subsp. paracasei 2004 improves health and lifespan in a DAF-16-dependent manner.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Fatores de Transcrição Forkhead , Longevidade , Probióticos , Animais , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Lacticaseibacillus paracasei/fisiologia , Lacticaseibacillus paracasei/genética , Estresse Oxidativo , Microbioma Gastrointestinal
3.
Elife ; 132024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747717

RESUMO

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , RNA de Cadeia Dupla , Ribonuclease III , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/metabolismo , Ribonuclease III/química , Ribonuclease III/genética , Microscopia Crioeletrônica , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases/metabolismo , RNA Helicases/genética , RNA Helicases/química , Ligação Proteica , Trifosfato de Adenosina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/química
4.
PLoS One ; 19(5): e0295094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743782

RESUMO

Oxygen is essential to all the aerobic organisms. However, during normal development, disease and homeostasis, organisms are often challenged by hypoxia (oxygen deprivation). Hypoxia-inducible transcription factors (HIFs) are master regulators of hypoxia response and are evolutionarily conserved in metazoans. The homolog of HIF in the genetic model organism C. elegans is HIF-1. In this study, we aimed to understand short-term hypoxia response to identify HIF-1 downstream genes and identify HIF-1 direct targets in C. elegans. The central research questions were: (1) which genes are differentially expressed in response to short-term hypoxia? (2) Which of these changes in gene expression are dependent upon HIF-1 function? (3) Are any of these hif-1-dependent genes essential to survival in hypoxia? (4) Which genes are the direct targets of HIF-1? We combine whole genome gene expression analyses and chromatin immunoprecipitation sequencing (ChIP-seq) experiments to address these questions. In agreement with other published studies, we report that HIF-1-dependent hypoxia-responsive genes are involved in metabolism and stress response. Some HIF-1-dependent hypoxia-responsive genes like efk-1 and phy-2 dramatically impact survival in hypoxic conditions. Genes regulated by HIF-1 and hypoxia overlap with genes responsive to hydrogen sulfide, also overlap with genes regulated by DAF-16. The genomic regions that co-immunoprecipitate with HIF-1 are strongly enriched for genes involved in stress response. Further, some of these potential HIF-1 direct targets are differentially expressed under short-term hypoxia or are differentially regulated by mutations that enhance HIF-1 activity.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Hipóxia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Sítios de Ligação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética
5.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740431

RESUMO

Organismal growth and lifespan are inextricably linked. Target of Rapamycin (TOR) signalling regulates protein production for growth and development, but if reduced, extends lifespan across species. Reduction in the enzyme RNA polymerase III, which transcribes tRNAs and 5S rRNA, also extends longevity. Here, we identify a temporal genetic relationship between TOR and Pol III in Caenorhabditis elegans, showing that they collaborate to regulate progeny production and lifespan. Interestingly, the lifespan interaction between Pol III and TOR is only revealed when TOR signaling is reduced, specifically in adulthood, demonstrating the importance of timing to control TOR regulated developmental versus adult programs. In addition, we show that Pol III acts in C. elegans muscle to promote both longevity and healthspan and that reducing Pol III even in late adulthood is sufficient to extend lifespan. This demonstrates the importance of Pol III for lifespan and age-related health in adult C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Longevidade , Alvo Mecanístico do Complexo 1 de Rapamicina , RNA Polimerase III , Transdução de Sinais , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Longevidade/genética , RNA Polimerase III/metabolismo , RNA Polimerase III/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Serina-Treonina Quinases TOR/metabolismo , Envelhecimento/metabolismo , Envelhecimento/genética , Envelhecimento/fisiologia
6.
Biomed Environ Sci ; 37(4): 377-386, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38727160

RESUMO

Objective: This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans (C. elegans). Methods: In this study, the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C. elegans. The worms were fed Escherichia coli OP50 ( E. coli OP50), glucose, and different concentrations of LFBEP-C1. Body size, lifespan, movement, triglyceride content, and gene expression were analyzed. The results were analyzed using ANOVA and Tukey's multiple comparison test. Results: Compared with the model group, the head-swing frequency of C. elegans in the group of LFBEP-C1 at 20 µg/mL increased by 33.88%, and the body-bending frequency increased by 27.09%. This indicated that LFBEP-C1 improved the locomotive ability of C. elegans. The average lifespan of C. elegans reached 13.55 days, and the body length and width of the C. elegans decreased after LFBEP-C1 intake. Additionally, LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels. The expression levels of sbp-1, daf-2, and mdt-15 significantly decreased, while those of daf-16, tph-1, mod-1, and ser-4 significantly increased after LFBEP-C1 intake. Changes in these genes explain the signaling pathways that regulate lipid metabolism. Conclusion: LFBEP-C1 significantly reduced lipid deposition in C. elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development, lifespan, and exercise behavior of C. elegans. In addition, LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein, insulin, and 5-hydroxytryptamine signaling pathways.


Assuntos
Caenorhabditis elegans , Hordeum , Metabolismo dos Lipídeos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Hordeum/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Fermentação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Lactobacillus plantarum , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
7.
Cell Mol Life Sci ; 81(1): 202, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691171

RESUMO

Glial cells constitute nearly half of the mammalian nervous system's cellular composition. The glia in C. elegans perform majority of tasks comparable to those conducted by their mammalian equivalents. The cephalic sheath (CEPsh) glia, which are known to be the counterparts of mammalian astrocytes, are enriched with two nuclear hormone receptors (NHRs)-NHR-210 and NHR-231. This unique enrichment makes the CEPsh glia and these NHRs intriguing subjects of study concerning neuronal health. We endeavored to assess the role of these NHRs in neurodegenerative diseases and related functional processes, using transgenic C. elegans expressing human alpha-synuclein. We employed RNAi-mediated silencing, followed by behavioural, functional, and metabolic profiling in relation to suppression of NHR-210 and 231. Our findings revealed that depleting nhr-210 changes dopamine-associated behaviour and mitochondrial function in human alpha synuclein-expressing strains NL5901 and UA44, through a putative target, pgp-9, a transmembrane transporter. Considering the alteration in mitochondrial function and the involvement of a transmembrane transporter, we performed metabolomics study via HR-MAS NMR spectroscopy. Remarkably, substantial modifications in ATP, betaine, lactate, and glycine levels were seen upon the absence of nhr-210. We also detected considerable changes in metabolic pathways such as phenylalanine, tyrosine, and tryptophan biosynthesis metabolism; glycine, serine, and threonine metabolism; as well as glyoxalate and dicarboxylate metabolism. In conclusion, the deficiency of the nuclear hormone receptor nhr-210 in alpha-synuclein expressing strain of C. elegans, results in altered mitochondrial function, coupled with alterations in vital metabolite levels. These findings underline the functional and physiological importance of nhr-210 enrichment in CEPsh glia.


Assuntos
Caenorhabditis elegans , Modelos Animais de Doenças , Mitocôndrias , Neuroglia , Doença de Parkinson , alfa-Sinucleína , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Mitocôndrias/metabolismo , Neuroglia/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/genética , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Animais Geneticamente Modificados , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Dopamina/metabolismo , Metabolômica , Interferência de RNA
9.
PLoS Genet ; 20(5): e1011253, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722918

RESUMO

Synaptic vesicle proteins (SVps) are transported by the motor UNC-104/KIF1A. We show that SVps travel in heterogeneous carriers in C. elegans neuronal processes, with some SVp carriers co-transporting lysosomal proteins (SV-lysosomes). LRK-1/LRRK2 and the clathrin adaptor protein complex AP-3 play a critical role in the sorting of SVps and lysosomal proteins away from each other at the SV-lysosomal intermediate trafficking compartment. Both SVp carriers lacking lysosomal proteins and SV-lysosomes are dependent on the motor UNC-104/KIF1A for their transport. In lrk-1 mutants, both SVp carriers and SV-lysosomes can travel in axons in the absence of UNC-104, suggesting that LRK-1 plays an important role to enable UNC-104 dependent transport of synaptic vesicle proteins. Additionally, LRK-1 acts upstream of the AP-3 complex and regulates its membrane localization. In the absence of the AP-3 complex, the SV-lysosomes become more dependent on the UNC-104-SYD-2/Liprin-α complex for their transport. Therefore, SYD-2 acts to link upstream trafficking events with the transport of SVps likely through its interaction with the motor UNC-104. We further show that the mistrafficking of SVps into the dendrite in lrk-1 and apb-3 mutants depends on SYD-2, likely by regulating the recruitment of the AP-1/UNC-101. SYD-2 acts in concert with AP complexes to ensure polarized trafficking & transport of SVps.


Assuntos
Complexo 3 de Proteínas Adaptadoras , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Lisossomos , Proteínas do Tecido Nervoso , Vesículas Sinápticas , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/genética , Complexo 3 de Proteínas Adaptadoras/metabolismo , Complexo 3 de Proteínas Adaptadoras/genética , Lisossomos/metabolismo , Lisossomos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Transporte Proteico , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Neurônios/metabolismo , Cinesinas/metabolismo , Cinesinas/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Axônios/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular
10.
Proc Natl Acad Sci U S A ; 121(19): e2317753121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687794

RESUMO

Type 1 voltage-activated calcium channels (CaV1) in the plasma membrane trigger calcium release from the sarcoplasmic reticulum (SR) by two mechanisms. In voltage-induced calcium release (VICR), CaV1 voltage sensing domains are directly coupled to ryanodine receptors (RYRs), an SR calcium channel. In calcium-induced calcium release (CICR), calcium ions flowing through activated CaV1 channels bind and activate RYR channels. VICR is thought to occur exclusively in vertebrate skeletal muscle while CICR occurs in all other muscles (including all invertebrate muscles). Here, we use calcium-activated SLO-2 potassium channels to analyze CaV1-SR coupling in Caenorhabditis elegans body muscles. SLO-2 channels were activated by both VICR and external calcium. VICR-mediated SLO-2 activation requires two SR calcium channels (RYRs and IP3 Receptors), JPH-1/Junctophilin, a PDZ (PSD95, Dlg1, ZO-1 domain) binding domain (PBD) at EGL-19/CaV1's carboxy-terminus, and SHN-1/Shank (a scaffolding protein that binds EGL-19's PBD). Thus, VICR occurs in invertebrate muscles.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Canais de Cálcio , Cálcio , Proteínas de Membrana Transportadoras , Proteínas Musculares , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Músculos/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Proteínas de Membrana/metabolismo , Sinalização do Cálcio/fisiologia
11.
J Hazard Mater ; 471: 134356, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643579

RESUMO

Exposure to N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) caused toxicity on Caenorhabditis elegans, including reproductive toxicity. However, the underlying mechanisms for this induced reproductive toxicity by 6-PPDQ remain largely unclear. We examined possible association of ferroptosis activation with reproductive toxicity of 6-PPDQ. In 1-100 µg/L 6-PPDQ exposed nematodes, Fe2+ content was increased, which was accompanied with enhanced lipid peroxidation, increased malonydialdehyde (MDA) content, and decreased L-glutathione (GSH) content. Exposure to 1-100 µg/L 6-PPDQ decreased expressions of ftn-1 encoding ferritin, ads-1 encoding AGPS, and gpx-6 encoding GPX4 and increased expression of bli-3 encoding dual oxidase. After 6-PPDQ exposure, RNAi of ftn-1 decreased ads-1 and gpx-6 expressions and increased bli-3 expression. RNAi of ftn-1, ads-1, and gpx-6 strengthened alterations in ferroptosis related indicators, and RNAi of bli-3 suppressed changes of ferroptosis related indicators in 6-PPDQ exposed nematodes. Meanwhile, RNAi of ftn-1, ads-1, and gpx-6 induced susceptibility, and RNAi of bli-3 caused resistance to 6-PPDQ reproductive toxicity. Moreover, expressions of DNA damage checkpoint genes (clk-2, mrt-2, and hus-1) could be increased by RNAi of ftn-1, ads-1, and gpx-6 in 6-PPDQ exposed nematodes. Therefore, our results demonstrated activation of ferroptosis in nematodes exposed to 6-PPDQ at environmentally relevant concentrations, and this ferroptosis activation was related to reproductive toxicity of 6-PPDQ.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Ferroptose , Reprodução , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Ferroptose/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fenilenodiaminas/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Glutationa/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(16): e2316651121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588418

RESUMO

Protecting chromosome ends from misrecognition as double-stranded (ds) DNA breaks is fundamental to eukaryotic viability. The protein complex shelterin prevents a DNA damage response at mammalian telomeres. Mammalian shelterin proteins TRF1 and TRF2 and their homologs in yeast and protozoa protect telomeric dsDNA. N-terminal homodimerization and C-terminal Myb-domain-mediated dsDNA binding are two structural hallmarks of end protection by TRF homologs. Yet our understanding of how Caenorhabditis elegans protects its telomeric dsDNA is limited. Recently identified C. elegans proteins TEBP-1 (also called DTN-1) and TEBP-2 (also called DTN-2) are functional homologs of TRF proteins, but how they bind DNA and whether or how they dimerize is not known. TEBP-1 and TEBP-2 harbor three Myb-containing domains (MCDs) and no obvious dimerization domain. We demonstrate biochemically that only the third MCD binds DNA. We solve the X-ray crystal structure of TEBP-2 MCD3 with telomeric dsDNA to reveal the structural mechanism of telomeric dsDNA protection in C. elegans. Mutagenesis of the DNA-binding site of TEBP-1 and TEBP-2 compromises DNA binding in vitro, and increases DNA damage signaling, lengthens telomeres, and decreases brood size in vivo. Via an X-ray crystal structure, biochemical validation of the dimerization interface, and SEC-MALS analysis, we demonstrate that MCD1 and MCD2 form a composite dimerization module that facilitates not only TEBP-1 and TEBP-2 homodimerization but also heterodimerization. These findings provide fundamental insights into C. elegans telomeric dsDNA protection and highlight how different eukaryotes have evolved distinct strategies to solve the chromosome end protection problem.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Ligação a Telômeros , Animais , Proteínas de Ligação a Telômeros/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dimerização , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/química , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Ligação Proteica , Telômero/genética , Telômero/metabolismo , Complexo Shelterina , DNA/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas , Mamíferos/genética
13.
Nat Commun ; 15(1): 3490, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664429

RESUMO

Congenital nucleotide excision repair (NER) deficiency gives rise to several cancer-prone and/or progeroid disorders. It is not understood how defects in the same DNA repair pathway cause different disease features and severity. Here, we show that the absence of functional ERCC1-XPF or XPG endonucleases leads to stable and prolonged binding of the transcription/DNA repair factor TFIIH to DNA damage, which correlates with disease severity and induces senescence features in human cells. In vivo, in C. elegans, this prolonged TFIIH binding to non-excised DNA damage causes developmental arrest and neuronal dysfunction, in a manner dependent on transcription-coupled NER. NER factors XPA and TTDA both promote stable TFIIH DNA binding and their depletion therefore suppresses these severe phenotypical consequences. These results identify stalled NER intermediates as pathogenic to cell functionality and organismal development, which can in part explain why mutations in XPF or XPG cause different disease features than mutations in XPA or TTDA.


Assuntos
Caenorhabditis elegans , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA , Endonucleases , Fator de Transcrição TFIIH , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Humanos , Animais , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/metabolismo , Endonucleases/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/genética , Ligação Proteica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mutação , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
14.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578284

RESUMO

During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide repeat (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1. Motivated by the greater phenotypic severity of BUB-1 versus BUB-3 loss in C. elegans, we show that the BUB-1 TPR domain directly recognizes a distinct class of phosphorylated motifs in KNL-1 and that this interaction is essential for BUB-1-BUB-3 localization and function. BUB-3 recognition of phospho-MELT motifs additively contributes to drive super-stoichiometric accumulation of BUB-1-BUB-3 on its KNL-1 scaffold during mitotic entry. Bub1's TPR domain interacts with Knl1 in other species, suggesting that collaboration of TPR-dependent and Bub3-dependent interfaces in Bub1-Bub3 localization and functions may be conserved.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Ciclo Celular , Cinetocoros , Proteínas Associadas aos Microtúbulos , Proteínas Serina-Treonina Quinases , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Repetições de Tetratricopeptídeos , Proteínas Serina-Treonina Quinases/metabolismo
15.
Sci Adv ; 10(14): eadk8823, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569037

RESUMO

Organisms across taxa face stresses including variable temperature, redox imbalance, and xenobiotics. Successfully responding to stress and restoring homeostasis are crucial for survival. Aging is associated with a decreased stress response and alterations in the microbiome, which contribute to disease development. Animals and their microbiota share their environment; however, microbes have short generation time and can rapidly evolve and potentially affect host physiology during stress. Here, we leverage Caenorhabditis elegans and its simplified bacterial diet to demonstrate how microbial adaptation to oxidative stress affects the host's lifespan and stress response. We find that worms fed stress-evolved bacteria exhibit enhanced stress resistance and an extended lifespan. Through comprehensive genetic and metabolic analysis, we find that iron in stress-evolved bacteria enhances worm stress resistance and lifespan via activation of the mitogen-activated protein kinase pathway. In conclusion, our study provides evidence that understanding microbial stress-mediated adaptations could be used to slow aging and alleviate age-related health decline.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Longevidade/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estresse Oxidativo , Dieta , Bactérias/genética , Bactérias/metabolismo
16.
Elife ; 122024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564369

RESUMO

Evolutionary transitions from egg laying (oviparity) to live birth (viviparity) are common across various taxa. Many species also exhibit genetic variation in egg-laying mode or display an intermediate mode with laid eggs containing embryos at various stages of development. Understanding the mechanistic basis and fitness consequences of such variation remains experimentally challenging. Here, we report highly variable intra-uterine egg retention across 316 Caenorhabditis elegans wild strains, some exhibiting strong retention, followed by internal hatching. We identify multiple evolutionary origins of such phenotypic extremes and pinpoint underlying candidate loci. Behavioral analysis and genetic manipulation indicates that this variation arises from genetic differences in the neuromodulatory architecture of the egg-laying circuitry. We provide experimental evidence that while strong egg retention can decrease maternal fitness due to in utero hatching, it may enhance offspring protection and confer a competitive advantage. Therefore, natural variation in C. elegans egg-laying behaviour can alter an apparent trade-off between different fitness components across generations. Our findings highlight underappreciated diversity in C. elegans egg-laying behavior and shed light on its fitness consequences. This behavioral variation offers a promising model to elucidate the molecular changes in a simple neural circuit underlying evolutionary shifts between alternative egg-laying modes in invertebrates.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Oviposição/genética , Oviparidade , Proteínas de Caenorhabditis elegans/genética , Evolução Biológica
17.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673805

RESUMO

Amphetamines (Amph) are psychostimulants broadly used as physical and cognitive enhancers. However, the long-term effects of prenatal exposure to Amph have been poorly investigated. Here, we show that continuous exposure to Amph during early development induces long-lasting changes in histone methylation at the C. elegans tyrosine hydroxylase (TH) homolog cat-2 and the vesicular monoamine transporter (VMAT) homologue cat-1 genes. These Amph-induced histone modifications are correlated with enhanced expression and function of CAT-2/TH and higher levels of dopamine, but decreased expression of CAT-1/VMAT in adult animals. Moreover, while adult animals pre-exposed to Amph do not show obvious behavioral defects, when challenged with Amph they exhibit Amph hypersensitivity, which is associated with a rapid increase in cat-2/TH mRNA. Because C. elegans has helped reveal neuronal and epigenetic mechanisms that are shared among animals as diverse as roundworms and humans, and because of the evolutionary conservation of the dopaminergic response to psychostimulants, data collected in this study could help us to identify the mechanisms through which Amph induces long-lasting physiological and behavioral changes in mammals.


Assuntos
Anfetamina , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Desenvolvimento Embrionário , Tirosina 3-Mono-Oxigenase , Proteínas Vesiculares de Transporte de Monoamina , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Anfetamina/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Dopamina/metabolismo , Epigênese Genética/efeitos dos fármacos
18.
J Nutr Sci Vitaminol (Tokyo) ; 70(2): 164-173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38684387

RESUMO

Bitterness and astringency are the aversive tastes in mammals. In humans, aversion to bitterness and astringency may be reduced depending on the eating experience. However, the cellular and molecular mechanisms underlying plasticity in preference to bitter and astringent tastants remain unknown. This study aimed to investigate the preference plasticity to bitter and astringent tea polyphenols, including catechins and tannic acids, in the model animal Caenorhabditis elegans. C. elegans showed avoidance behavior against epigallocatechin gallate (EGCG), tannic acid, and theaflavin. However, they displayed diminishing avoidance against EGCG depending on their EGCG-feeding regime at larval stages. Additionally, the behavioral plasticity in avoiding EGCG required the transcription factor DAF-16/FOXO. Isoform-specific deletion mutant analysis and cell-specific rescue analysis revealed that the function of daf-16 isoform b in AIY interneurons is necessary for experience-dependent behavioral plasticity to EGCG.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Catequina , Fatores de Transcrição Forkhead , Interneurônios , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Biflavonoides/farmacologia , Paladar/efeitos dos fármacos , Chá/química , Comportamento Animal/efeitos dos fármacos , Larva/efeitos dos fármacos
19.
ACS Nano ; 18(17): 11323-11334, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38635335

RESUMO

Expounding bioaccumulation pathways of nanoplastics in organisms is a prerequisite for assessing their ecological risks in the context of global plastic pollution. Invertebrate uptake preference toward nanoplastics is a key initial step of nanoplastic food chain transport that controls their global biosafety, while the biological regulatory mechanism remains unclear. Here, we reveal a preferential uptake mechanism involving active avoidance of nanoplastics by Caenorhabditis elegans and demonstrate the relationship between the uptake preference and nanoplastic characteristics. Nanoplastics with 100 nm in size or positive surface charges induce stronger avoidance due to higher toxicity, causing lower accumulation in nematodes, compared to the 500 nm-sized or negatively charged nanoplastics, respectively. Further evidence showed that nematodes did not actively ingest any types of nanoplastics, while different nanoplastics induced defense responses in a toxicity-dependent manner and distinctly stimulated the avoidance behavior of nematodes (ranged from 15.8 to 68.7%). Transcriptomics and validations using mutants confirmed that the insulin/IGF signaling (IIS) pathway is essential for the selective avoidance of nanoplastics. Specifically, the activation of DAF-16 promoted the IIS pathway-mediated defense against nanoplastics and stimulated the avoidance behavior, increasing the survival chances of nematodes. Considering the genetical universality of this defense response among invertebrates, such an uptake preference toward certain nanoplastics could lead to cascaded risks in the ecosystem.


Assuntos
Caenorhabditis elegans , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Nanopartículas/química , Plásticos/química , Tamanho da Partícula , Comportamento Animal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Microplásticos/toxicidade
20.
Nat Commun ; 15(1): 3456, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658528

RESUMO

Intraflagellar transport (IFT) orchestrates entry of proteins into primary cilia. At the ciliary base, assembled IFT trains, driven by kinesin-2 motors, can transport cargo proteins into the cilium, across the crowded transition zone. How trains assemble at the base and how proteins associate with them is far from understood. Here, we use single-molecule imaging in the cilia of C. elegans chemosensory neurons to directly visualize the entry of kinesin-2 motors, kinesin-II and OSM-3, as well as anterograde cargo proteins, IFT dynein and tubulin. Single-particle tracking shows that IFT components associate with trains sequentially, both in time and space. Super-resolution maps of IFT components in wild-type and mutant worms reveal ciliary ultrastructure and show that kinesin-II is essential for axonemal organization. Finally, imaging cilia lacking kinesin-II and/or transition zone function uncovers the interplay of kinesin-II and OSM-3 in driving efficient transport of IFT trains across the transition zone.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cílios , Cinesinas , Caenorhabditis elegans/metabolismo , Animais , Cílios/metabolismo , Cílios/ultraestrutura , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cinesinas/metabolismo , Cinesinas/genética , Flagelos/metabolismo , Flagelos/ultraestrutura , Tubulina (Proteína)/metabolismo , Axonema/metabolismo , Axonema/ultraestrutura , Dineínas/metabolismo , Transporte Biológico , Imagem Individual de Molécula , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA